magnetic-bubble memory - definition. What is magnetic-bubble memory
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

TYPE OF NON-VOLATILE COMPUTER MEMORY
Magnetic bubble memory; Magnet bubble memory; GGGQEP
  • Bubble memory driver coils/windings/field coils and guides (T bar guides in this case); the guides or propagation elements, are on top of a magnetic film, which is on top of a substrate chip. This is mounted to a PCB (not shown) and then surrounded by two windings.
  • Intel 7110 magnetic-bubble memory module

bubble memory         
A storage device built using materials such as gadolinium gallium garnet which are can be magnetised easily in only one direction. A film of these materials can be created so that it is magnetisable in an up-down direction. The magnetic fields tend to join together, some with the north pole facing up, some with the south. When a veritcal magnetic field is imposed on this, the areas in opposite alignment to the field shrink to circles, or 'bubbles'. A bubble can be formed by reversing the field in a small spot, and can be destroyed by increasing the field. Bubble memory is a kind of non-volatile storage but EEPROM, Flash Erasable Programmable Read-Only Memory and ferroelectric technologies, which are also non-volatile, are faster. ["Great Microprocessors of the Past and Present", V 4.0.0, John Bayko <bayko@hercules.cs.uregina.ca>, Appendix C] (1995-02-03)
Bubble memory         
Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as bubbles or domains, each storing one bit of data. The material is arranged to form a series of parallel tracks that the bubbles can move along under the action of an external magnetic field.
Magnetic-core memory         
  • Diagram of a 4×4 plane of magnetic core memory in an X/Y line coincident-current setup. X and Y are drive lines, S is sense, Z is inhibit. Arrows indicate the direction of current for writing.
  • A 10.8×10.8 cm plane of magnetic core memory with 64 x 64 bits (4 Kb), as used in a [[CDC 6600]]. Inset shows ''word line'' architecture with two wires per bit
  • Close-up of a core plane. The distance between the rings is roughly 1 mm (0.04 in). The green horizontal wires are X; the Y wires are dull brown and vertical, toward the back. The sense wires are diagonal, colored orange, and the inhibit wires are vertical twisted pairs.
  • One of three inter-connected modules that make up an Omnibus-based PDP-8 core memory plane.  This is the middle of the three and contains the array of actual ferrite cores.
  • One of three inter-connected modules that make up an Omnibus-based (PDP 8/e/f/m) PDP-8 core memory plane.
  • One of three inter-connected modules that make up an Omnibus-based PDP-8 core memory plane.
  • [[Project Whirlwind]] core memory
  • Diagram of the [[hysteresis]] curve for a magnetic memory core during a read operation. Sense line current pulse is high ("1") or low ("0") depending on original magnetization state of the core.
PREDOMINANT FORM OF RANDOM-ACCESS COMPUTER MEMORY FOR 20 YEARS BETWEEN ABOUT 1955 AND 1975
Ferrite core memory; Ferrite-core memory; Core store; Magnetic-Core Storage; Ferrite ram; Magnetic core storage; Core Memory; Main store; Magnetic core memory; Core memory; Core memories
Magnetic-core memory was the predominant form of random-access computer memory for 20 years between about 1955 and 1975.

ويكيبيديا

Bubble memory

Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as bubbles or domains, each storing one bit of data. The material is arranged to form a series of parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by moving them to the edge of the material, where they can be read by a conventional magnetic pickup, and then rewritten on the far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay-line memory systems.

Bubble memory started out as a promising technology in the 1970s, offering memory density of an order similar to hard drives, but performance more comparable to core memory, while lacking any moving parts. This led many to consider it a contender for a "universal memory" that could be used for all storage needs. The introduction of dramatically faster semiconductor memory chips pushed bubble into the slow end of the scale, and equally dramatic improvements in hard-drive capacity made it uncompetitive in price terms. Bubble memory was used for some time in the 1970s and 1980s where its non-moving nature was desirable for maintenance or shock-proofing reasons. The introduction of flash storage and similar technologies rendered even this niche uncompetitive, and bubble disappeared entirely by the late 1980s.